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Abstract

Effect of nonlocality on the dynamic behavior of laminated composites is investigated by means of dispersion of

vertically polarized harmonic shear waves propagating in the direction parallel to layering. Nonlocal elasticity is briefly

summarized and the dispersion relation for symmetric and anti-symmetric waves are obtained within the framework of

both classical and elasticity. The numerical structure of the problem is investigated as to reduce some possible incorrect

results which may take place in the solution. Results are displayed in a serious of figures. Advantages of nonlocal

elasticity in representing the mechanical behavior of composite materials is discussed.

� 2002 Published by Elsevier Science Ltd.
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1. Introduction

Laminated composites have been becoming increasingly important in various branches of modern

technology because they offer more attractive and cost effective solutions for a large variety of problems.

For example, in structural design, laminated composites find increasing applications not only because they

have high strength-to-weight and high stiffness-to-weight ratio but also they are more resistive to environ-
mental effects and they require less maintenance.

Analysis of mechanical behaviour of composite materials plays a central role in various stages of

composite technology. There is a vast amount of literature on the analysis of mechanical behavior of

laminated composite materials. Among them Basar et al. (1993) gave an extensive model for the static

behavior of laminated composites, a unified derivation of various shear deformation models with ability to

deal with finite rotations. Finite element formulation of their equations is also included in this study as well

as a comparative numerical study demonstrating the prediction capability of different models of analysis of

static behavior of laminated composites.
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Dynamic behavior of composite materials is as important as static ones, in many cases more important.

But, the models developed for analysis of static behavior of composite materials are not suitable to rep-

resent most of the features of dynamic behaviors. For example, they all are far from predicting dispersion

relation for waves propagating in a composite material. But it is an experimental fact (actually, it would not
be difficult to see by a mind experiment as well) wave propagation is highly dispersive. On the other hand,

dispersion of waves propagating in an heterogeneous medium has attracted the attention of scientists since

more than five decades because of the importance of the seismic waves and the nature of the seismograms

recorded from earthquakes. First systematic treatment of this problem was given by Postma (1955) which

the earth was considered as a layered heterogeneous medium and was modelled by an transversely isotropic

one. This approach (also called ‘‘effective modulus theories’’) has later been adopted for the analysis of

layered composites with successful results for static and quasi-static problems (for example see, Christen-

sen, 1979; Nemat-Nasser and Hori, 1993). But as far as the dynamic problems are concerned, it has been
observed that this method is insufficient in predicting many aspects of the dynamic behavior of materials.

That is why the dynamic problems, especially the ones related to wave propagation, are studied separately.

The fact that the propagation of wave in a nonhomogeneous medium is dispersive, motivated re-

searchers to construct adequate models for the dynamic behavior of layered composites. (Achenbach et al.,

1968; Sun et al., 1967; Sun et al., 1968a; Herrmann and Achenbach, 1967, 1968) proposed ‘‘the effective

stiffness theory’’ where the laminae are considered as plates for which the displacements are taken to be

linearly dependent on the distance along the thickness. This approach which suffers from the discontinuity

of the stresses at the interface was refined Drumheller and Bedford (1973) by adding a quadratic term of the
variable along the thickness to the displacement. Another major approach to the laminated composites is

the application of the ‘‘interacting mixture continua’’ developed by Bedford and Stern (1972) where the

laminae are considered to be the interacting constituents. McNiven and Mengi (1979a,b,c) also employed

the interacting mixture continua for modelling wave propagation in periodically structured composites.

These two and the other approaches are tested by ‘‘the elasticity solution’’ (see, for example Sun et al.

(1968a,b) which are later given (Sve, 1971) in a more general form.

Another important theoretical aspect of composite material has been indicated by Hashin (1983). In his

outstanding review, Hashin has explicitly stated that ultimate understanding of the heterogeneous materials
(not limited to, but also includes composite materials) requires a theory which takes into account the

microstructure of the material, which in practical terms means a constitutive equation of nonlocal type.

Beran and McCoy (1970) have already shown that the relation between the ensemble averages of stress and

strain in a heterogeneous elastic solids is of the nonlocal form, i.e.

rijðx�Þ ¼
Z
B
Lijklðx�; x�

0Þeklðx�
0Þdx0 ð1Þ

Recently Altan and Aifantis (1998) showed that the mixture theory of elasticity is equivalent to a special

form of gradient dependent theory of elasticity under appropriate averaging process.

Nonlocal theory of elasticity which will be employed in this study has been developed by Eringen (1987)

using thermomechanical arguments and by Eringen (1976b) by using variational principles (see also
Eringen (1976b, 1978)). Although the nonlocal theory of elasticity seems more capable to represent the

mechanical behavior of materials it suffers from theoretical and numerical difficulties inherent the Fredholm

integral equation of the first kind. Probably that is why nonlocal elasticity has not been applied widely to

various problems. Nevertheless, Eringen has shown that the wave propagation is dispersive (see Eringen

and Edelen, 1972), and the stress field around a dislocation is finite Eringen (1976a) in nonlocal elasticity.

Recently, Artan (1999) has shown that stress is finite in a half space loaded by a couple, and also shown that

stress singularity is eliminated in punch problems (see Artan, 1996). To the best of our knowledge, No-

winski (1984, 1989, 1990) is the first researcher who has applied nonlocal elasticity to composite materials.
In a previous paper of us (Altan and Artan, 2001) dispersion of horizontally polarized harmonic shear

5928 R. Artan, B.S. Altan / International Journal of Solids and Structures 39 (2002) 5927–5944

SAS 3879 No. of Pages 5944, DTD=4.3.1
5 November 2002 Disk used SPS, ChennaiARTICLE IN PRESS



waves propagating in the layering direction in an infinite medium which consists of alternating layers of two

isotropic nonlocal layers has been investigated. The subject of the presented paper is to investigate the

dispersion of vertically polarized harmonic shear waves propagating in the layering direction in an infinite

layered composite which consists of alternating layers of two isotropic nonlocal layers.
The next section contains a brief summary on the field equations of nonlocal elasticity. The problem

considered in this study is introduced and formulated in the following section. The structure of the dis-

persion relation is criticized from the numerical point of view and some potential errors which may take

place in the solution of them in both classical and nonlocal elasticity are indicated. Results are displayed in

series of figures. The program Mathematica and Latex are used throughout.

2. The basic equations of nonlocal elasticity

The governing equations of the nonlocal theory of elasticity are

tkl;k þ qðfl � €uulÞ ¼ 0 ð2Þ

tkl ¼
Z
V
fk0ðjx�

0 � x�jÞejjðx�
0Þdkl þ 2l0ðjx�

0 � x�jÞeklðx�
0Þdvðx�

0Þ ð3Þ

eklðx�
0Þ ¼ 1

2
ðuk;lðx�

0Þ þ ul;kðx�
0ÞÞ ð4Þ

where tkl is the nonlocal stress tensor, uk is the displacement vector, ekl is the strain tensor and the comma as

a subscript denotes the partial derivative, that is

tkl;m ¼ otkl
oxm

; u0k;l ¼
ou0k
ox0l

ð5Þ

we use the Einstein�s summation convention for repeated indices. Eqs. (2) and (4) are the same, both in local

and nonlocal elasticities. Eq. (3) express the fact that the stress at an arbitrary point x� depends on the strains

at all the points x�
0 of the body. k0 and l0 are Lam�ee constants of the nonlocal medium and they depend on the

distance between x� and x�
0. They can be taken as

k0 ¼ aðjx�
0 � x�jÞk; l0 ¼ aðjx�

0 � x�jÞl ð6Þ

where k and l are the Lam�ee constants of the local case. aðjx�
0 � x�jÞ is called the kernel function and is the

measure of the effect of the strain at x�
0 on the stress at x�. The kernel function satisfies the following

properties (Eringen, 1987, 1976a):

i(i) aðjx�
0jÞ is a continuous function of x�

0, with a bounded support X, where a > 0 inside the boundary oX of

X, and a ¼ 0 outside

(ii) Z
V

aðjx�
0 � x�jÞdvðx�

0Þ ¼ 1 ð7Þ

3. Propagation of SV waves in a laminated composite

Suppose that Lam�ee potentials in two media are given as follows

/ðmÞ ¼ Uðxm2 Þ expðiðkx1 � xtÞÞ ð8Þ
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wðmÞ ¼ iWðxm2 Þ expðiðkx1 � xtÞÞ; m ¼ 1; 2 ð9Þ

The functions /ðmÞ and wðmÞ are the solutions of the differential equations (see Eringen, 1987)

cðmÞ
2

1 r2/ðmÞ � 1

�
� 1

X2
r2

�
€//ðmÞ ¼ 0 ð10Þ

cðmÞ
2

2 r2wðmÞ � 1

�
� 1

X2
r2

�
€wwðmÞ ¼ 0 ð11Þ

where

cðmÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km þ 2lm

qm

s
; cðmÞ2 ¼

ffiffiffiffiffiffi
lm

qm

r
ð12Þ

X is nonlocality parameter. From the previous equations

cðmÞ
2

1

�
� x2

X2

�
U00 þ x2 1

��
þ k2

X2

�
� cðmÞ

2

1 k2
�

U ¼ 0 ð13Þ

cðmÞ
2

2

�
� x2

X2

�
W00 þ x2 1

��
þ k2

X2

�
� cðmÞ

2

2 k2
�

W ¼ 0 ð14Þ

If the solution of the above differential equations are substituted into Eqs. (8) and (9), Lam�ee potentials are
obtained.

/ðmÞðx1; x
ðmÞ
2 ; tÞ ¼ fAm sinðkpmxðmÞ2 Þ þ Bm cosðkpmxðmÞ2 Þg expðiðkx1 � xtÞÞ ð15Þ

wðmÞðx1; x
ðmÞ
2 ; tÞ ¼ ifCm sinðkqmxðmÞ2 Þ þ Dm cosðkqmxðmÞ2 Þg expðiðkx1 � xtÞÞ ð16Þ

where

pm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

cðmÞ
2

1 � ðc2k2=X2Þ
� 1

s
; qm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

cðmÞ
2

2 � ðc2k2=X2Þ
� 1

s
; c ¼ x

k
ð17Þ

Displacement field can be found as follows:

uðmÞ1 ¼ o/ðmÞ

ox1
þ owðmÞ

ox2
; uðmÞ2 ¼ o/ðmÞ

ox2
� owðmÞ

ox1
ð18Þ

by using Eq. (18)

uðmÞ1 ðx1; xðmÞ2 ; tÞ ¼ ieiðkx1�xtÞk Bm cosðkxðmÞ2 pmÞ
n

þ Cm cosðkxðmÞ2 qmÞqm þ Am sinðkxðmÞ2 pmÞ

� Dmqm sinðkxðmÞ2 qmÞ
o

ð19Þ

uðmÞ2 ðx1; xðmÞ2 ; tÞ ¼ eiðkx1�xtÞk Dm cosðkxðmÞ2 qmÞ
n

þ Am cosðkxðmÞ2 pmÞpm � Bmpm sinðkxðmÞ2 pmÞ

þ Cm sinðkxðmÞ2 qmÞ
o

ð20Þ
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The kernel function is chosen as

aðjx� � x�
0jÞ ¼ X2

2p
K0 X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x01Þ

2 þ ðx2 � x02Þ
2

q� �
ð21Þ

where K0ðxÞ is modified Bessel function of the second kind (see Fig. 1). A close inspection of the non-local

kernel shows that this function dies out very fast. In other words, strains in an immediate vicinity of the

point contribute to the stress at this point, strains outside this region do not. ‘‘Therefore, ignoring the effect

of non-homogeneous character of the elastic constants on the local stress will not cause a significant error,

especially at the points far enough from the interface.’’

After tedious calculations the following result is obtained.

X2

2p

Z 1

�1

Z 1

�1
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xfðx1 � x01Þ

2 þ ðx2 � x02Þ
2g

q� �
f ðx01; x02Þdx01 dx02 ¼

f ðx1; x2Þ
1þ ðk=X2Þð1þ p2Þ

ð22Þ

where

f ðx1; x2Þ ¼
sinðkpx2Þ
cosðkpx2Þ

� �

 sinðkx1Þ

cosðkx1Þ

� �
ð23Þ

The nonlocal stress field can be obtained by using Eqs. (3), (6) and (22)

tðmÞ12 ¼ �ieiðkx1�xtÞk2lm
�2Am cosðkxðmÞ2 pmÞpm
1þ ðk=XÞ2ð1þ p2mÞ

(
þ
Dm cosðkxðmÞ2 qmÞ q2m � 1


 �
1þ ðk=XÞ2ð1þ q2mÞ

þ 2Bmpm sinðkxðmÞ2 pmÞ
1þ ðk=XÞ2ð1þ p2mÞ

þ Cmðq2m � 1Þ sinðkxðmÞ2 qmÞ
1þ ðk=XÞ2ð1þ q2mÞ

)
ð24Þ

Fig. 1. Kernel function.
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tðmÞ22 ¼ �eiðkx�xtÞk2
Bm cosðkxðmÞ2 pmÞðkm þ ðkm þ 2lmÞp2mÞ

1þ ðk=XÞ2ð1þ p2mÞ

(
� 2lmCm cosðkxðmÞ2 qmÞqm

1þ ðk=XÞ2ð1þ q2mÞ

þ Amðkm þ ðkm þ 2lmÞp2mÞ sinðkx
ðmÞ
2 pmÞ

1þ ðk=XÞ2ð1þ p2mÞ
þ 2lmDmqm sinðkxðmÞ2 qmÞ

1þ ðk=XÞ2ð1þ q2mÞ

)
ð25Þ

The jump conditions at the interface are (see Fig. 2)

uð1Þ1 ðh1=2Þ ¼ u21ð�h2=2Þ; uð1Þ2 ðh1=2Þ ¼ u22ð�h2=2Þ;

tð1Þ12 ðh1=2Þ ¼ tð2Þ12 ð�h2=2Þ; tð1Þ22 ðh1=2Þ ¼ tð2Þ12 ð�h2=2Þ
ð26Þ

3.1. Anti-symmetrical deformations with respect to the midplanes of the layers

Bm ¼ Cm ¼ 0. In this case, the longitudinal displacements are odd and the transverse displacements are

even. The four conditions of the type Eq. (26) yield four homogeneous equations for the constants A1, A2,

D1, D2. The requirement that the determinant of the coefficients must vanish yields the dispersion relation in
the form.

gðn; b; g; c; m1; m2; h; k;XÞ ¼ detðmÞ ¼ 0 ð27Þ

Fig. 2. Laminated composite and coordinate axis.
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where

n ¼ kh1; g ¼ h1
h2

; c ¼ l1

l2

; h ¼ q1

q2

; b ¼ cffiffiffiffiffiffiffiffiffiffiffiffi
l2=q2

p ð28Þ

p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2cðm1�1Þ

b2hð2m1�1Þ �
k
X


 �2 � 1

vuut ; p2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2ðm2�1Þ

b2ð2m2�1Þ �
k
X


 �2 � 1

vuut ð29Þ

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
c

b2h
� k

X


 �2 � 1

vuut ; q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1

b2
� k

X


 �2 � 1

vuut ð30Þ

m11 ¼ sin
np1
2

� �
ð31Þ

m12 ¼ sin
np2
2g

� �
ð32Þ

m13 ¼ �q1 sin
nq1
2

� �
ð33Þ

m14 ¼ �q2 sin
nq2
2g

� �
ð34Þ

m21 ¼ p1 cos
np1
2

� �
ð35Þ

m22 ¼ �p2 cos
np2
2g

� �
ð36Þ

m23 ¼ cos
nq1
2

� �
ð37Þ

m24 ¼ � cos
nq2
2g

� �
ð38Þ

m31 ¼
1

ðm1 � 1ÞX2
p1ðk2b2hð2m1

�
� 1Þ � 2cðm1 � 1ÞX2Þ cos np1

2

� ��
ð39Þ

m32 ¼ � 1

ðm2 � 1ÞX2
p2ðk2b2ð2m2

�
� 1Þ � 2ðm2 � 1ÞX2Þ cos np2

2g

� ��
ð40Þ

m33 ¼
1

X2



� 2cX2 þ b2hð2k2 þ X2Þ

�
cos

nq1
2

� �
ð41Þ

m34 ¼ � 1

X2
ð2k2b2 þ ðb2 � 2ÞX2Þ cos nq2

2g

� �
ð42Þ

R. Artan, B.S. Altan / International Journal of Solids and Structures 39 (2002) 5927–5944 5933

SAS 3879 No. of Pages 5944, DTD=4.3.1
5 November 2002 Disk used SPS, ChennaiARTICLE IN PRESS



m41 ¼
1

ðm1 � 1ÞX2
ðk2b2hð2m1

�
� 1Þ þ ðb2h � 2cÞðm1 � 1ÞX2Þ sin np1

2

� ��
ð43Þ

m42 ¼
1

ðm2 � 1ÞX2
ðk2b2ð2m2

�
� 1Þ þ ðb2 � 2Þðm2 � 1ÞX2Þ sin np2

2g

� ��
ð44Þ

m43 ¼
2q1
X2

ðcX2 � k2b2hÞ sin nq1
2

� �
ð45Þ

m44 ¼
2q2
X2

ðX2 � k2b2Þ sin nq2
2g

� �
ð46Þ

The domain of the function gðn; b; g; c; m1; m2; h; k;XÞ for various values of b is given below.

gðn; b; 4; 50; 0:3; 0:35; 3; 2; 50Þ; 7:6315 < b < 25

gðn; b; 4; 100; 0:3; 0:35; 3; 2; 50Þ; 10:7926 < b < 25

gðn; b; 4; 50; 0:3; 0:35; 3; 2; 100Þ; 7:6361 < b < 50

gðn; b; 4; 50; 0:3; 0:35; 3; 2; 50Þ; 10:7991 < b < 50

ð47Þ

There are dispersion curves in the intersection of the surfaces gðn; b; g; c; m1; m2; h; k;XÞ and z ¼ 0 plane (see
Figs. 3–10).

3.2. Symmetrical deformations with respect to the midplanes of the layers

Am ¼ Dm ¼ 0. In this case, the longitudinal displacements are even and the transverse displacements are

odd. The four conditions of the type Eq. (26) yield four homogeneous equations for the constants B1, B2,

C1, C2. The requirement that the determinant of the coefficients must vanish yields the dispersion relation in

the form.

f ðn; b; g; c; m1; m2; h; k;XÞ ¼ detðnÞ ¼ 0 ð48Þ

Fig. 3. Surface of gðn;b; 4; 50; 0:3; 0:35; 3; 2; 50Þ.
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where

n11 ¼ cos
np1
2

� �
ð49Þ

n12 ¼ � cos
np2
2g

� �
ð50Þ

n13 ¼ q1 cos
nq1
2

� �
ð51Þ

Fig. 4. Dispersion curves for gðn;b; 4; 50; 0:3; 0:35; 3; 2; 50Þ ¼ 0.

Fig. 5. Surface of gðn;b; 4; 100; 0:3; 0:35; 3; 2; 50Þ.
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n14 ¼ �q2 cos
nq2
2g

� �
ð52Þ

n21 ¼ �p1 sin
np1
2

� �
ð53Þ

n22 ¼ �p2 sin
np2
2g

� �
ð54Þ

Fig. 6. Dispersion curves for gðn; b; 4; 100; 0:3; 0:35; 3; 2; 50Þ ¼ 0.

Fig. 7. Surface of gðn;b; 4; 50; 0:3; 0:35; 3; 2; 100Þ.
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n23 ¼ sin
nq1
2

� �
ð55Þ

n24 ¼ sin
nq2
2g

� �
ð56Þ

n31 ¼
1

ðm1 � 1ÞX2
p1ðk2b2hð2m1

�
� 1Þ � 2cðm1 � 1ÞX2Þ sin np1

2

� ��
ð57Þ

Fig. 8. Dispersion curves for gðn;b; 4; 50; 0:3; 0:35; 3; 2; 100Þ ¼ 0.

Fig. 9. Surface of gðn;b; 4; 100; 0:3; 0:35; 3; 2; 100Þ.
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n32 ¼ � 1

ðm2 � 1ÞX2
p2ðk2b2ð2m2

�
� 1Þ � 2ðm2 � 1ÞX2Þ sin np2

2g

� ��
ð58Þ

n33 ¼
1

X2



� 2cX2 þ b2hð2k2 þ X2Þ

�
sin

nq1
2

� �
ð59Þ

n34 ¼
1

X2
ð2k2b2 þ ðb2 � 2ÞX2Þ sin nq2

2g

� �
ð60Þ

Fig. 10. Dispersion curves for gðn; b; 4; 100; 0:3; 0:35; 3; 2; 100Þ ¼ 0.

x

b

Fig. 11. Surface of f ðn; b; 4; 50; 0:3; 0:35; 3; 2; 50Þ.
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n41 ¼
1

ðm1 � 1ÞX2
ðk2b2hð2m1

�
� 1Þ þ ðb2h � 2cÞðm1 � 1ÞX2Þ cos np1

2

� ��
ð61Þ

n42 ¼
1

ðm2 � 1ÞX2
ðk2b2ð1

�
� 2m2Þ � ðb2 � 2Þðm2 � 1ÞX2Þ cos np2

2g

� ��
ð62Þ

n43 ¼
2q1
X2

ðk2b2h � cX2Þ cos nq1
2

� �
ð63Þ

Fig. 12. Dispersion curves for f ðn; b; 4; 50; 0:3; 0:35; 3; 2; 50Þ ¼ 0.

x

b

Fig. 13. Surface of f ðn; b; 4; 100; 0:3; 0:35; 3; 2; 50Þ.
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n44 ¼
2q2
X2

ðX2 � k2b2Þ cos nq2
2g

� �
ð64Þ

The function f ðn; b; g; c; m1; m2; h; k;XÞ has the same domain with the function gðn; b; g; c; m1; m2; h; k;XÞ.
There are dispersion curves in the intersection of the surfaces f ðn; b; g; c; m1; m2; h; k;XÞ and z ¼ 0 plane (see

Figs. 11–18).

Fig. 14. Dispersion curves for f ðn;b; 4; 100; 0:3; 0:35; 3; 2; 50Þ ¼ 0.

Fig. 15. Surface of f ðn; b; 4; 50; 0:3; 0:35; 3; 2; 100Þ.
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4. Conclusion

In this paper, the dispersion relation for a vertically harmonic shear wave propagating in the layering

direction in an infinite medium which consists of alternating layers of two homogeneous, isotropic materials

is investigated within the framework of nonlocal elasticity. Symmetric and anti-symmetric cases are studied

separately. It has been shown that the numerical structure of the problem under investigation can be tricky,

may cause misleading results. The effect of nonlocality on the dispersion relation for the propagation of

vertically polarized shear waves is shown.

Fig. 16. Dispersion curves for f ðn; b; 4; 50; 0:3; 0:35; 3; 2; 100Þ ¼ 0.

Fig. 17. Surface of f ðn; b; 4; 100; 0:3; 0:35; 3; 2; 100Þ.
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The dispersion relation given by Eq. (27) is of transandant equation, and therefore it can be solved only

by approximate methods. It is also known that all algorithms based on approximate method for solving
transandant equation employ an initial guess. On the other hand, another well-known fact is that the

dispersion relation (27) has many solutions, more precisely, there are infinitely many frequencies corres-

ponding to a certain wave number (modes). While analyzing the dispersion relation (27) by common

techniques the following drawbacks are observed.

(a) Some modes can be easily disregarded: Initial guess employed at the beginning of the algorithm may

cause to jump to not to the next mode but to another mode.

(b) It can be picked some points from the next mode when calculating the points on a certain mode, espe-
cially if the modes are close each other. It was not possible to remedy this situation by decreasing the

absolute or relative error in calculating the roots.

In order to eliminate these drawback the surfaces defined by Eqs. (27) and (48) are intersected by z ¼ 0

plane. The overall picture of the surfaces given by Eqs. (27) and (48) provides a global view and with this

information at hand the possibility of making mistakes caused by the drawback mentioned above can be

reduced to a reasonable level. During the course of this study, it has been observed that the dispersion

curves can be too close to each other for some values of parameters of the problem. This situation arises
more frequently in the nonlocal solution of the problem.

The dispersion and attenuation of waves has a prime role in analyzing the dynamic behaviour of

composite materials. In analyzing the phenomena, such as sound isolation, impact behaviour, ultrasonic

testing, etc. wave propagation has a central importance. Although wave propagation in nonlocal elasticity

has been analyzed by Eringen and Edelen (1972), and Eringen (1987). Ari (1982) applications of nonlocal

elasticity to composite materials is quite limited. Nowinski studied the propagation of Love waves (No-

winski, 1984), transmission of wave across the interface of two dissimilar elastic half spaces Nowinski

(1989), and propagation of waves in an elastic multilayer periodic media (Nowinski, 1989). The presented
study can be considered as the continuation of the studies on periodic layered composites started by in the

Fig. 18. Dispersion curves for f ðn;b; 4; 100; 0:3; 0:35; 3; 2; 100Þ ¼ 0.
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direction of nonlocality. As is also indicated above, nonlocality may exist in a material due to crystal

structure, grains, impurities, dislocations, micro-cracks, etc. Therefore, the nonlocal effects may become

important especially for the propagation of high frequency waves.

The following properties are observed in the nonlocal solution of the problem.

(a) The characteristics of the dispersion relation have a strong dependence on the nonlocal parameter. The

pattern of the dispersion curves, location of modes, stop bands, etc. dramatically change for decreasing

values of the nonlocal parameter.

(b) The stress field reverts to the classical counterpart if the nonlocality parameter X goes to infinity (see

Sun et al., 1968b).

(c) The dispersion curves are getting closer as the nonlocality parameter X as well as the ratio of shear

modulus c increase.

The properties observed in the dispersion relations for a vertically polarized harmonic shear wave

propagating in the direction of layering show that nonlocal elasticity is more capable in representing the

dynamic behaviour of layered composites.

References

Achenbach, J.D., Sun, C.T., Herrmann, G., 1968. On the vibrations of a laminated body. Journal of Applied Mechanics (Trans.

ASME, 90, Series 90) 35, 689–696.

Altan, B.S., Aifantis, E.C., 1998. On some aspects in the special theory of gradient elasticity. Journal of Mechanical Behavior of

Materials 8, 231–282.

Altan, B.S., Artan, R., 2001. Propagation of SH waves in a periodically layered media in nonlocal elasticity. International Journal of

Nonlinear Sciences and Numerical Simulation 2 (2).

Artan, R., 1996. Rectangular rigid stamp on a nonlocal elastic half-plane. International Journal of Solids and Structures 33, 3577–3586.

Artan, R., 1999. The nonlocal solution of the elastic half plane loaded by a couple. International Journal of Engineering Science 37,

1389–1405.

Ari, N., 1982. High field gradients in nonlocal elasticity, Dissertation Princeton University.

Basar, Y., Ding, Y., Schultz, R., 1993. Refined shear-deformation models for composite laminates with finite rotations. International

Journal of Solids and Structures 30 (19), 2611–2638.

Bedford, A., Stern, M., 1972. A multi-continuum theory for composite elastic materials. Acta Mechanica 14, 85–102.

Beran, M.J., McCoy, J.J., 1970. Mean field variations in a statistical sample of heterogeneous linearly elastic solids. International

Journal of Solids and Structures 6, 1035–1054.

Christensen, R.M., 1979. Mechanics of Composite Materials. John Wiley and Sons, New York.

Drumheller, D.S., Bedford, A., 1973. On a continuum theory for laminated medium. Journal of Applied Mechanics (Trans. ASME, 95,

Series E) 40, 527–532.

Eringen, A.C., 1976a. Edge dislocation in nonlocal elasticity. International Journal of Engineering Science 10, 233–248.

Eringen, A.C., 1976b. Nonlocal Polar Field Theories. In: Eringen, A.C., (Ed.), Continuum Physics, vol. 4. Academic Press, New York,

pp. 205–265.

Eringen, A.C., 1978. Nonlocal continuum mechanics and some application. In: Barut, A.O. (Ed.), NATO Advanced Study Institute on

Nonlinear Equations in Physics and Mathematics, Istanbul, August, 1987. D. Reidel Publishing Company, Holland, pp. 271–318.

Eringen, A.C., 1987. Theory of nonlocal elasticity and some applications. Research Mechanica 21, 313–342.

Eringen, A.C., Edelen, D.G.B., 1972. On nonlocal elasticity. International Journal of Engineering Science 10, 233–248.

Hashin, Z., 1983. Analysis of composite materials. Journal of Applied Mechanics 50, 481–505.

Herrmann, G., Achenbach, J.D., 1967. On dynamic theories of fiber-reinforced composites, Northwestern University Structural

Mechanics Laboratory Technical Report No. 67-2.

Herrmann, G., Achenbach, J.D., 1968. Applications of theories of generalized cosserat continua to the dynamics of composite

materials. In: Proceedings of IUTAM Symposium on the Generalized Cosserat Continuum Theory. Springer-Verlag, Berlin,

pp. 69–79.

McNiven, H.D., Mengi, Y., 1979a. A mathematical model for the linear dynamic behavior of two phase periodic materials.

International Journal of Solids and Structures 15, 271–280.

R. Artan, B.S. Altan / International Journal of Solids and Structures 39 (2002) 5927–5944 5943

SAS 3879 No. of Pages 5944, DTD=4.3.1
5 November 2002 Disk used SPS, ChennaiARTICLE IN PRESS



McNiven, H.D., Mengi, Y., 1979b. A mixture theory for elastic laminated composites. International Journal of Solids and Structures

15, 281–302.

McNiven, H.D., Mengi, Y., 1979c. Propagation of transient waves in elastic laminated composites. International Journal of Solids and

Structures 15, 303–318.

Nemat-Nasser, S., Hori, M., 1993. Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier Science Publishers BV,

Amsterdam.

Nowinski, J.L., 1984. On the nonlocal aspects for the propagation of love waves. International Journal Engineering. Science 22,

383–392.

Nowinski, J.L., 1989. On the wave transmission across the interface of two elastic half-spaces with nonlocal cohession forces. Acta

Mechanica 78, 209–218.

Nowinski, J.L., 1990. On the wave propagation in elastic multilayer periodic media with nonlocal interactions. Journal of Applied

Mechanics 57, 937–940.

Postma, G.W., 1955. Wave propagation in stratified medium. Geophysics 20 (4), 780–806.

Sun, C.T., Achenbach, J.D., Herrmann, G., 1967. Effective stiffness theory for laminated media, Northwestern University Structural

Mechanics Laboratory Technical Report No. 67-4.

Sun, C.T., Achenbach, J.D., Hermann, G., 1968a. Continuum theory for a laminated medium. Journal of Applied Mechanics 90,

467–475.

Sun, C.T., Achenbach, J.D., Herrmann, G., 1968b. Time-harmonic waves in a stratified medium propagating in the direction of the

layering. Journal of Applied Mechanics (Trans. ASME, vol. 90, Series E) 35, 408–411.

Sve, C., 1971. Time-harmonic waves travelling obliquely in a periodically laminated medium. Journal of Applied Mechanics (Trans.

ASME) 38, 477–482.

5944 R. Artan, B.S. Altan / International Journal of Solids and Structures 39 (2002) 5927–5944

SAS 3879 No. of Pages 5944, DTD=4.3.1
5 November 2002 Disk used SPS, ChennaiARTICLE IN PRESS


	Propagation of SV waves in a periodically layered media in nonlocal elasticity
	Introduction
	The basic equations of nonlocal elasticity
	Propagation of SV waves in a laminated composite
	Anti-symmetrical deformations with respect to the midplanes of the layers
	Symmetrical deformations with respect to the midplanes of the layers

	Conclusion
	References


