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Abstract

Effect of nonlocality on the dynamic behavior of laminated composites is investigated by means of dispersion of
vertically polarized harmonic shear waves propagating in the direction parallel to layering. Nonlocal elasticity is briefly
summarized and the dispersion relation for symmetric and anti-symmetric waves are obtained within the framework of
both classical and elasticity. The numerical structure of the problem is investigated as to reduce some possible incorrect
results which may take place in the solution. Results are displayed in a serious of figures. Advantages of nonlocal
elasticity in representing the mechanical behavior of composite materials is discussed.
© 2002 Published by Elsevier Science Ltd.
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1. Introduction

Laminated composites have been becoming increasingly important in various branches of modern
technology because they offer more attractive and cost effective solutions for a large variety of problems.
For example, in structural design, laminated composites find increasing applications not only because they
have high strength-to-weight and high stiffness-to-weight ratio but also they are more resistive to environ-
mental effects and they require less maintenance.

Analysis of mechanical behaviour of composite materials plays a central role in various stages of
composite technology. There is a vast amount of literature on the analysis of mechanical behavior of
laminated composite materials. Among them Basar et al. (1993) gave an extensive model for the static
behavior of laminated composites, a unified derivation of various shear deformation models with ability to
deal with finite rotations. Finite element formulation of their equations is also included in this study as well
as a comparative numerical study demonstrating the prediction capability of different models of analysis of
static behavior of laminated composites.
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Dynamic behavior of composite materials is as important as static ones, in many cases more important.
But, the models developed for analysis of static behavior of composite materials are not suitable to rep-
resent most of the features of dynamic behaviors. For example, they all are far from predicting dispersion
relation for waves propagating in a composite material. But it is an experimental fact (actually, it would not
be difficult to see by a mind experiment as well) wave propagation is highly dispersive. On the other hand,
dispersion of waves propagating in an heterogeneous medium has attracted the attention of scientists since
more than five decades because of the importance of the seismic waves and the nature of the seismograms
recorded from earthquakes. First systematic treatment of this problem was given by Postma (1955) which
the earth was considered as a layered heterogeneous medium and was modelled by an transversely isotropic
one. This approach (also called “effective modulus theories’) has later been adopted for the analysis of
layered composites with successful results for static and quasi-static problems (for example see, Christen-
sen, 1979; Nemat-Nasser and Hori, 1993). But as far as the dynamic problems are concerned, it has been
observed that this method is insufficient in predicting many aspects of the dynamic behavior of materials.
That is why the dynamic problems, especially the ones related to wave propagation, are studied separately.

The fact that the propagation of wave in a nonhomogeneous medium is dispersive, motivated re-
searchers to construct adequate models for the dynamic behavior of layered composites. (Achenbach et al.,
1968; Sun et al., 1967; Sun et al., 1968a; Herrmann and Achenbach, 1967, 1968) proposed “the effective
stiffness theory”” where the laminae are considered as plates for which the displacements are taken to be
linearly dependent on the distance along the thickness. This approach which suffers from the discontinuity
of the stresses at the interface was refined Drumheller and Bedford (1973) by adding a quadratic term of the
variable along the thickness to the displacement. Another major approach to the laminated composites is
the application of the “interacting mixture continua’ developed by Bedford and Stern (1972) where the
laminae are considered to be the interacting constituents. McNiven and Mengi (1979a,b,¢) also employed
the interacting mixture continua for modelling wave propagation in periodically structured composites.
These two and the other approaches are tested by “the elasticity solution” (see, for example Sun et al.
(1968a,b) which are later given (Sve, 1971) in a more general form.

Another important theoretical aspect of composite material has been indicated by Hashin (1983). In his
outstanding review, Hashin has explicitly stated that ultimate understanding of the heterogencous materials
(not limited to, but also includes composite materials) requires a theory which takes into account the
microstructure of the material, which in practical terms means a constitutive equation of nonlocal type.
Beran and McCoy (1970) have already shown that the relation between the ensemble averages of stress and
strain in a heterogeneous elastic solids is of the nonlocal form, i.e.

0i(x) :/BLijkl(f,{,)ek]()NC,)dx, 1)

Recently Altan and Aifantis (1998) showed that the mixture theory of elasticity is equivalent to a special
form of gradient dependent theory of elasticity under appropriate averaging process.

Nonlocal theory of elasticity which will be employed in this study has been developed by Eringen (1987)
using thermomechanical arguments and by Eringen (1976b) by using variational principles (see also
Eringen (1976b, 1978)). Although the nonlocal theory of elasticity seems more capable to represent the
mechanical behavior of materials it suffers from theoretical and numerical difficulties inherent the Fredholm
integral equation of the first kind. Probably that is why nonlocal elasticity has not been applied widely to
various problems. Nevertheless, Eringen has shown that the wave propagation is dispersive (see Eringen
and Edelen, 1972), and the stress field around a dislocation is finite Eringen (1976a) in nonlocal elasticity.
Recently, Artan (1999) has shown that stress is finite in a half space loaded by a couple, and also shown that
stress singularity is eliminated in punch problems (see Artan, 1996). To the best of our knowledge, No-
winski (1984, 1989, 1990) is the first researcher who has applied nonlocal elasticity to composite materials.
In a previous paper of us (Altan and Artan, 2001) dispersion of horizontally polarized harmonic shear
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waves propagating in the layering direction in an infinite medium which consists of alternating layers of two
isotropic nonlocal layers has been investigated. The subject of the presented paper is to investigate the
dispersion of vertically polarized harmonic shear waves propagating in the layering direction in an infinite
layered composite which consists of alternating layers of two isotropic nonlocal layers.

The next section contains a brief summary on the field equations of nonlocal elasticity. The problem
considered in this study is introduced and formulated in the following section. The structure of the dis-
persion relation is criticized from the numerical point of view and some potential errors which may take
place in the solution of them in both classical and nonlocal elasticity are indicated. Results are displayed in
series of figures. The program Mathematica and Latex are used throughout.

2. The basic equations of nonlocal elasticity

The governing equations of the nonlocal theory of elasticity are

tax + p(fi — i) =0 )
ta = /V{ﬂ/(\z’ = xD)ej;(x")ou + 21 (x" — x[)ew(x') do(x') )
eul) = 3 )+ 104(4) @

where #;; is the nonlocal stress tensor, u; is the displacement vector, ¢ is the strain tensor and the comma as
a subscript denotes the partial derivative, that is

Oty ou,

Tkim = 67; Uy, = 671’(

Xom X)

we use the Einstein’s summation convention for repeated indices. Egs. (2) and (4) are the same, both in local
and nonlocal elasticities. Eq. (3) express the fact that the stress at an arbitrary point x depends on the strains

at all the points x’ of the body. A" and p’ are Lamé constants of the nonlocal medium and they depend on the
distance between x and x'. They can be taken as

P =l — 2l =l —xDu (6)

()

where A and p are the Lamé constants of the local case. «(|x" — x|) is called the kernel function and is the
measure of the effect of the strain at x' on the stress at x. The kernel function satisfies the following
properties (Eringen, 1987, 1976a):

(i) o(]x'|) is a continuous function of x’, with a bounded support Q, where o > 0 inside the boundary 02 of
Q, and o = 0 outside

(i)
/V a(| — x) o) = 1 %

3. Propagation of SV waves in a laminated composite

Suppose that Lamé potentials in two media are given as follows
Dy = P(x3) exp(ikx; — wr)) (8)
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Vi = 1P () exp(ilkr) — wr)); m=1,2 )
The functions ¢, and ¥, are the solutions of the differential equations (see Eringen, 1987)
g, — (150 ) g =0 10
et Vidw) 2V )Pm (10)
w2y — (1- 592 ), =0 11
&) l//(m) e W(m) = (11)
where
A’ﬂl 2 m m
N e (12)
pm pm
Q is nonlocality parameter. From the previous equations
2 2
m? @ 2 k (m)? 12 _
(D)o s fo(1+£) - eLono 0
2 2
(m)? [ 1" 2 k (m)* 12 —
((22 —§>‘P —l—{w (l—i—@)—cz k}‘I’—O (14)

If the solution of the above differential equations are substituted into Egs. (8) and (9), Lamé potentials are
obtained.

Dy (61, 35" 1) = {4y sin(kp,s”) + B, cos(kp,y”) } exp(i(kn, — o)) (15)
¢<m)(x1,x(2'"), ) =1i{C, sin(kqu(zm) +D,, Cos(kqugm))} exp(i(kx; — wt)) (16)
where
pm=¢zc—2—1; qmz\/zc—z—l; c=2 (17)
C(l'") _ (Czkz/QZ) 0(2"1) _ (c2k2/Q2) k

Displacement field can be found as follows:

m 6(,25('") aw(m) . m 6([)('”) aw(iﬂ)

= = — 18
“ Ox; oxy "2 oxs ox, (18)
by using Eq. (18)
" (o1, 1) = it By cos (el p) + Co 0SS )+ A sin (65" pr)
— Do sin(loc(z”’)qm)} (19)

ugm) (1 ,x(2m>, ) = ei(l“‘_“”)k{Dm Cos(kxgm)qm) + 4, Cos(kx;m)pm)pm — B sin(kxém)pm)

+ Cysin(ke" g) } (20)
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The kernel function is chosen as

MM—§D=§§&<Q¢@r—MY+Oa—%Y> (1)

where Kj(x) is modified Bessel function of the second kind (see Fig. 1). A close inspection of the non-local
kernel shows that this function dies out very fast. In other words, strains in an immediate vicinity of the
point contribute to the stress at this point, strains outside this region do not. “Therefore, ignoring the effect
of non-homogeneous character of the elastic constants on the local stress will not cause a significant error,
especially at the points far enough from the interface.”

After tedious calculations the following result is obtained.

%;/il/ZK%(VQKM—WU2+01—XD@>f@L%ﬁhhhé=1+«£ﬁ¥;?+pa (2)
where
) = { S | f s | @

The nonlocal stress field can be obtained by using Egs. (3), (6) and (22)
t(m) — _iei(/cclfwt)kz _2Am Cos(kxgm>pm)pm Dm COS(kx;m)qm) (qi - 1) 2Bmpm Sin(kxgnﬁpm)
’ "L RN R) TR ) T R+

+m¢4@wwm} (24)
1+ (k/Q7 (1 + )

Fig. 1. Kernel function.
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(m) _ —ei(locwt)kz{ . Cos(kxgmpm)()“m + <)vn + 2lum)pr2n> _ 20, Crn cos(kx§"7>q,,,)qm

t
B L+ (/' (1 + 1) L+ (k/Q)(1 +¢2)
Ap(Fon + (o + 2:“m)p;2n) Sin(kx(z’n)pm) + 204, DG Sin(kx(2M)qm) (25)
L+ (k/Q(1+p2) L+ (k/Q)(1 + )
The jump conditions at the interface are (see Fig. 2)
) (h/2) = 1} (=ho/2); ) (h1/2) = 15(—ha/2); 26)
26

1y (h/2) = 13 (—ha/2); 65 (hi/2) = 13 (—h2/2)

3.1. Anti-symmetrical deformations with respect to the midplanes of the layers

B, = C, = 0. In this case, the longitudinal displacements are odd and the transverse displacements are
even. The four conditions of the type Eq. (26) yield four homogeneous equations for the constants 4;, 4,,
Dy, D,. The requirement that the determinant of the coefficients must vanish yields the dispersion relation in
the form.

g(faﬂana%vlvvbo:kv ‘Q) :det(m) =0 (27)

2h, A1, Up,P1 .

@

X
Ao o,P2 .
2h, !

(O]

}‘ls “lapl X1

Fig. 2. Laminated composite and coordinate axis.
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where
h Jad] P ¢
C=khy, n=—, 7=—, 0=—, f=—— (28)
7 ha Ha P2 Via/p,
1 1
P = ey (£)? —Lop= e (&) -1 @)
02y —1) Q B (2n-1) Q
1 1
q1 = ;7@)2—1 g = Lf(g)zil (30)
B0 Q B2 Q

iy = sin (%) (31)
)

miy = sin (é’;z (32)
SE—E -
mis = —qysin (fzin) (34)
oy = py 008 (%) (35)
= s (22 s
mas = cos (%) (37)
mag = — cos (3@) (38)
my = m <p1 (F*B*0(2v; — 1) — 2p(v; — 1)Q%) cos (%)) (39)
myy = m <p2(k252(2v2 — 1) —2(v; — 1)Q*) cos (%)) (40)
my = é (—29Q° + B2O(2K + Q%)) cos (égl ) (41)

My = —é(Zkzﬁz + (B> —2)2%) cos (i—?) (42)
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May = L ((k2ﬁ29(2v1 — 1)+ (20— 2y)(v; — 1)) sin <@>) (43)
(v — )@ 2

mp = ———— (<k2ﬁ2<2v2 = 1)+ (B = 2)(v2 = @) sin (Q)) (44)
(v, — 1)Q? 2n

i = 20— K2F0)sin <ﬂ) (45)
Q 2

290, 0 gy [
Mg =03 (Q° —k°f7) sin 2 (46)

The domain of the function g(¢&, 8,1, 7, vi, v2, 0, k, Q) for various values of f§ is given below.

g(&, B,4,50,0.3,0.35,3,2,50); 7.6315 < f < 25
(&, B,4,100,0.3,0.35,3,2,50); 10.7926 < f < 25
g(&,B,4,50,0.3,0.35,3,2,100); 7.6361 < f < 50
g(&,B,4,50,0.3,0.35,3,2,50); 10.7991 < B < 50

There are dispersion curves in the intersection of the surfaces g(&, 8,1, y, vi, v2, 0, k, Q) and z = 0 plane (see
Figs. 3-10).

3.2. Symmetrical deformations with respect to the midplanes of the layers

A,, = D,, = 0. In this case, the longitudinal displacements are even and the transverse displacements are
odd. The four conditions of the type Eq. (26) yield four homogeneous equations for the constants By, B;,
C}, Cy. The requirement that the determinant of the coefficients must vanish yields the dispersion relation in
the form.

f(év ﬁv n,%,V1, V2, 0, k, Q) = det(n) =0 (48)

\‘kv‘%&\ A\\E «\W
WS ’.:‘\\v/ A |

\
\
AV

Fig. 3. Surface of g(¢&, f5,4,50,0.3,0.35,3,2,50).
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Fig. 5. Surface of g(¢, 5,4,100,0.3,0.35, 3,2, 50).

where

ny; = cos (%) (49)

AN

nijp = — COS

ni3 = g1 COS <

%) (50)

) (s1)

SIS
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20

Fig. 7. Surface of g(¢&, §,4,50,0.3,0.35,3,2,100).

niy = —(g»COS (@> (52)
n
ny1 = —p1 sin (%) (53)

Ny = —D sin (62—[:72) (54)
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Fig. 9. Surface of g(¢&, 5,4, 100,0.3,0.35,3,2,100).

ny3 = sin (%)
Ny4 = Sin (i—?;)

(56)
ny = (W—IW (pl (KF0(2v; — 1) — 29(v; — 1)@%) sin <%))
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Fig. 11. Surface of f(¢, ,4,50,0.3,0.35,3,2, 50).

Ny = _m (p2<k2/32(2v2 — 1) = 2(v, — D@ sin (3’1’;» (58)

N33 = é (—29Q* + F0(2k* + Q%)) sin (équ>

n3y =
Q2

202 2 ooy i [ C42
2k B+ (P 2)Q)sm(2n>
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Fig. 13. Surface of f(¢&, §,4,100,0.3,0.35,3,2, 50).

ny = m <(k2ﬁ29(2v1 — 1)+ (B0 = 2y) (v — 1)@2%) cos (%)) (61)
R Cirer (@020 = (7 - 202 - D@ycos ( 22)) (©)
2q,

Nyy = o (k20 — yQ%) cos (%)
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Fig. 14. Dispersion curves for f(¢&, §,4,100,0.3,0.35,3,2,50) = 0.
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."'0"0
Y
=2

Fig. 15. Surface of f(¢&, 8,4, 50,0.3,0.35,3,2, 100).

2
Ny = % (92 - kQﬁz) cos (52_122) (64)

The function f(¢, B, n,7,vi,v2,0,k, Q) has the same domain with the function g(¢&, S, #,y,vi,v2,0,k, Q).
There are dispersion curves in the intersection of the surfaces (&, 5,1, 7, vi, v2, 0, k, Q) and z = 0 plane (see
Figs. 11-18).
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4. Conclusion

In this paper, the dispersion relation for a vertically harmonic shear wave propagating in the layering
direction in an infinite medium which consists of alternating layers of two homogeneous, isotropic materials
is investigated within the framework of nonlocal elasticity. Symmetric and anti-symmetric cases are studied
separately. It has been shown that the numerical structure of the problem under investigation can be tricky,
may cause misleading results. The effect of nonlocality on the dispersion relation for the propagation of
vertically polarized shear waves is shown.
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Fig. 18. Dispersion curves for f(&, $,4,100,0.3,0.35,3,2,100) = 0.

The dispersion relation given by Eq. (27) is of transandant equation, and therefore it can be solved only
by approximate methods. It is also known that all algorithms based on approximate method for solving
transandant equation employ an initial guess. On the other hand, another well-known fact is that the
dispersion relation (27) has many solutions, more precisely, there are infinitely many frequencies corres-
ponding to a certain wave number (modes). While analyzing the dispersion relation (27) by common
techniques the following drawbacks are observed.

(a) Some modes can be easily disregarded: Initial guess employed at the beginning of the algorithm may
cause to jump to not to the next mode but to another mode.

(b) It can be picked some points from the next mode when calculating the points on a certain mode, espe-
cially if the modes are close each other. It was not possible to remedy this situation by decreasing the
absolute or relative error in calculating the roots.

In order to eliminate these drawback the surfaces defined by Eqgs. (27) and (48) are intersected by z = 0
plane. The overall picture of the surfaces given by Egs. (27) and (48) provides a global view and with this
information at hand the possibility of making mistakes caused by the drawback mentioned above can be
reduced to a reasonable level. During the course of this study, it has been observed that the dispersion
curves can be too close to each other for some values of parameters of the problem. This situation arises
more frequently in the nonlocal solution of the problem.

The dispersion and attenuation of waves has a prime role in analyzing the dynamic behaviour of
composite materials. In analyzing the phenomena, such as sound isolation, impact behaviour, ultrasonic
testing, etc. wave propagation has a central importance. Although wave propagation in nonlocal elasticity
has been analyzed by Eringen and Edelen (1972), and Eringen (1987). Ari (1982) applications of nonlocal
elasticity to composite materials is quite limited. Nowinski studied the propagation of Love waves (No-
winski, 1984), transmission of wave across the interface of two dissimilar elastic half spaces Nowinski
(1989), and propagation of waves in an elastic multilayer periodic media (Nowinski, 1989). The presented
study can be considered as the continuation of the studies on periodic layered composites started by in the
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direction of nonlocality. As is also indicated above, nonlocality may exist in a material due to crystal
structure, grains, impurities, dislocations, micro-cracks, etc. Therefore, the nonlocal effects may become
important especially for the propagation of high frequency waves.

The following properties are observed in the nonlocal solution of the problem.

(a) The characteristics of the dispersion relation have a strong dependence on the nonlocal parameter. The
pattern of the dispersion curves, location of modes, stop bands, etc. dramatically change for decreasing
values of the nonlocal parameter.

(b) The stress field reverts to the classical counterpart if the nonlocality parameter Q goes to infinity (see
Sun et al., 1968b).

(c) The dispersion curves are getting closer as the nonlocality parameter 2 as well as the ratio of shear
modulus y increase.

The properties observed in the dispersion relations for a vertically polarized harmonic shear wave
propagating in the direction of layering show that nonlocal elasticity is more capable in representing the
dynamic behaviour of layered composites.
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